§2. Compact Operators

Compact linear operators

A linear operator A defined from a normed space E into a normed space F is called a linear compact operator or completely continuous linear operator if for every bounded subset G of E, the image A(G) is relatively compact in F. In other words, the closure $\overline{A(G)}$ is compact.

Theorem 1 (Compactness criterion)

A linear operator A defined from a normed space E into a normed space F is called a linear compact operator or completely continuous linear operator if and only if for every bounded sequence φ_n in E, the sequence $A\varphi_n$ in F has a convergent subsequence.

Proof

Let φ_n be a bounded sequence in E, since the operator A is compact, then the set $\{A\varphi_n\}$ is relatively compact in F where this property shows that $A\varphi_n$ contains a convergent subsequence.

Conversely, let us consider any bounded subset G in E and let ψ_n be any sequence in A(G). Then there exists a bounded sequence φ_n in G, such that

 $\psi_n = A \varphi_n.$

By assumption, $A\varphi_n = \psi_n$ contains a convergent subsequence ψ_{n_k} in F. Thus A(G) is relatively compact, because for any bounded sequence ψ_n in A(G) there exits a convergent subsequence ψ_{n_k} in F. In other words, for all bounded set $G \subset E$, the set A(G) is relatively compact in F. Hence A is compact.

Theorem 2

The linear combination $A = \alpha A_1 + \beta A_2$ of compact operators A_1 and A_2 is a compact operator, for every scalars α and β .

Proof

Let φ_n be a bounded sequence in E and let $A\varphi_n$ be a sequence in F, then

$$A\varphi_n(x) = \alpha A_1 \varphi_n(x) + \beta A_2 \varphi_n(x), \text{ with } \varphi_n \in E, n \in \mathbb{N}$$

The operators A_1 and A_2 are compact, one can extract from $A_1\varphi_n$ and $A_2\varphi_n$ two convergent subsequences which give by their sum a convergent subsequence of $A\varphi_n$. Hence A is compact.

Theorem 3

The product AB of two bounded operators A and B is compact if either of operators A or B is compact.

Proof

Let φ_n be a bounded sequence in E, then if we consider B as a bounded operator the sequence $B\varphi_n(x)$ is bounded, and from the compactness of the operator A gives a convergent subsequence $A(B\varphi_{n_k}(x))$ of $A(B\varphi_n(x))$. Hence the operator AB is compact.

On the other hand, if we consider B as a compact, one can extract from $B\varphi_n(x)$ a convergent subsequence $B\varphi_{n(k)}(x)$, and from the boundedness of the operator A gives the convergence of the sequence $A(B\varphi_{n(k)}(x))$. Hence the operator AB is compact.

Theorem 4

A sequence A_n of compact operators defined from a normed space E into a Banach space F converges uniformly to an operator A, say,

$$\lim_{n \to \infty} \|A_n - A\| = 0.$$

Then the limit operator A is compact.

Proof

Let φ_n be a bounded sequence in E, the operator A_1 is compact, then one can extract from the sequence $A_1\varphi_n$ a convergent subsequence, say φ_n^1 a subsequence from φ_n such that $A_1\varphi_n^1$ converges.

In the same way, we can extract from the sequence $A_2\varphi_n^1$ a convergent subsequence, say φ_n^2 a subsequence from φ_n^1 such that $A_2\varphi_n^2$ converges.

Noting that, we obtain from the bounded sequence φ_n a subsequence φ_n^2 such that $A_1\varphi_n^2$ and $A_2\varphi_n^2$ both converge.

Continuing in this way, we see that, for the compact operators $A_1, A_2, ..., A_p$, there exists a nested subsequences

$$\varphi_n^p \subset \dots \varphi_n^2 \subset \varphi_n^1 \subset \varphi_n,$$

such that, the sequences $A_k \varphi_n^p$ converge for all k = 1, 2, ..., p.

In order to show the compactness of the operator limit A, we must use the completeness of the space F and showing that the sequence $A\varphi_n^p$ is Cauchy sequence.

Noting that the sequence φ_n is bounded, say $\|\varphi_n\| \leq M$ for all n. Hence $\|\varphi_n^p\| \leq M$ for each n and p. Choose n = p so that

$$\|A_n - A\| < \frac{\varepsilon}{3M}.$$

Since the sequence $A_n \varphi_n^p$ is Cauchy, because it converges there is N such that, for all p > N and q > N, we get

$$\|A_n\varphi_n^p - A_n\varphi_n^q\| < \frac{\varepsilon}{3}$$

Hence we obtain

$$\begin{split} \| A\varphi_n^p - A\varphi_n^q \| &= \| A\varphi_n^p - A_n\varphi_n^p + A_n\varphi_n^p - A_n\varphi_n^q + A_n\varphi_n^q - A\varphi_n^q \| \\ &\leq \| A\varphi_n^p - A_n\varphi_n^p \| + \| A_n\varphi_n^p - A_n\varphi_n^q \| + \| A_n\varphi_n^q - A\varphi_n^q \| \\ &\leq \| A_n - A \| \| \varphi_n^p \| + \| A_n\varphi_n^p - A_n\varphi_n^q \| + \| A_n - A \| \| \varphi_n^q \| \\ &\leq \frac{\varepsilon}{3M} M + \frac{\varepsilon}{3} + \frac{\varepsilon}{3M} M = \varepsilon. \end{split}$$

Remembering that, due to the completeness of the space F, the Cauchy sequence $A\varphi_n^p$ converges as a subsequence of $A\varphi_n$ where φ_n^p is a subsequence of an arbitrary bounded sequence φ_n . Hence the compactness of the operator A.

Theorem 5 (finite dimensional range)

Let A be a bounded operator defined from E into F with the range A(E)has a finite dimension dim $A(E) < \infty$, then the operator A is compact.

Proof

Indeed, for all bounded set G in E, the range A(G) is a bounded set in the finite dimensional space A(E). Hence A(G) is relatively compact, it follows that A is a compact operator.

Theorem 6 (finite dimensional domain)

Let A be a bounded operator defined from E into F with the domain E has a finite dimension dim $E < \infty$, then the operator A is compact.

Proof

Indeed, the space E has a finite dimension dim $E < \infty$ implies the finite dimensional range A(E), say

$$\dim A(E) \le \dim E,$$

it follows that A is a compact operator.

Lemma 1

Let G be a closed subspace in the normed space E such that, $G \neq E$ then there exists an element $\varphi \in E$ with $\|\varphi\| = 1$ such that, for all $\psi \in G$, we have

$$\|\varphi - \psi\| \ge \alpha$$
, with $0 < \alpha < 1$

Proof

Indeed, let f be an element of E such that $f \notin G$ then, we get

$$\inf_{h\in G} \|f-h\| = \beta > 0,$$

choosing an element g belongs to G such that,

$$\beta \le \|f - g\| \le \frac{\beta}{\alpha}.$$

Define the vector φ by

$$\varphi = \frac{f - g}{\|f - g\|},$$

this vector φ has a unit norm $\|\varphi\| = 1$, besides, for all $\psi \in G$ we get

$$\begin{split} \|\varphi - \psi\| &= \left\| \frac{f - g}{\|f - g\|} - \psi \right\| \\ &= \frac{1}{\|f - g\|} \|f - [g + (\|f - g\|\psi)]\| \\ &\geq \frac{\beta}{\|f - g\|} \geq \alpha. \end{split}$$

Theorem 7

The identity operator I defined from a normed space E into E is compact if and only if the space E has a finite dimension.

Proof

let φ_1 be an element of E, such that $\|\varphi_1\| = 1$, then the set of finite dimension $G_1 = span\{\varphi_1\}$ represents a closed subspace of E. So there exists an element $\varphi_2 \in E$, such that $\|\varphi_2\| = 1$ and $\|\varphi_1 - \varphi_2\| \ge \frac{1}{2}$. By the same way we take a closed subspace $G_2 = span\{\varphi_1, \varphi_2\}$ and finding an element $\varphi_3 \in E$ such that $\|\varphi_2\| = 1$ with $\|\varphi_1 - \varphi_3\| \ge \frac{1}{2}$ and $\|\varphi_2 - \varphi_3\| \ge \frac{1}{2}$. One repeat the same procedure until the obtaining of a sequence φ_n verifying $\|\varphi_n\| = 1$ and $\|\varphi_m - \varphi_n\| > \frac{1}{2}$, for all $m \neq n$.

Noting that, the sequence φ_n is bounded but does not contain any convergent subsequence. Hence the operator $I\varphi_n = \varphi_n$ is not compact.

Corollary 1

The closed unit ball B(0,1) in the normed space E of infinitely dimensional is not compact.

Indeed, B(0,1) is bounded but cannot be compact; thus

$$I(B(0,1) = B(0,1) = B(0,1),$$

is not relatively compact.

Corollary 2

A bounded operator A in a normed space E is not generally a compact operator.

Indeed, see the Identity operator A = I in the infinitely dimensional normed space E.

Theorem 8

The integral operator A defined from C(G) into C(G)

$$A\varphi(x) = \int_G k(x, y)\varphi(y)dy, \quad x, y \in G$$

with continuous kernel k(x, y) is a compact operator.

Proof

Let E be a bounded set of C(G) then, for each $\varphi \in E$, we have

$$\|\varphi\| \le M,$$

besides, for all $x \in G$ and $\varphi \in E$, we get

$$|A\varphi(x)| = \left| \int_{G} k(x,y)\varphi(y)dy \right| \\ \leq M |G| \max_{x,y\in G} |k(x,y)|.$$

It follows that A(E) is bounded.

By assumption, the kernel k(x, y) is continuous over the compact $G \times G$, thus it is uniformly continuous and therefore

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x, y, z \in G, \ |x - y| < \delta \Rightarrow |k(x, z) - k(y, z)| < \frac{\varepsilon}{M |G|}$$

Hence, for each $\varphi \in E$ and $x, y \in G$, with $|x - y| < \delta$

$$\begin{aligned} |A\varphi(x) - A\varphi(y)| &= \left| \int_{G} (k(x,z) - k(y,z))\varphi(z)dz \right| \\ &< \frac{\varepsilon}{M|G|} M|G| = \varepsilon \end{aligned}$$

This relation expresses that A(E) is equicontinuous. Hence A(E) is relatively compact, so by Arzela-Ascoli's theorem A is compact.

Weakly singular kernel

The kernel k(x, y) is said to be weakly singular if it is defined continuous on $G \times G \subset \mathbb{R}^n \times \mathbb{R}^n$ for all $x \neq y$ and there exist a positive constants Mand $\alpha \in]0, n]$ such that

$$|k(x,y)| < \frac{M}{|x-y|^{n-\alpha}}, \quad x,y \in G, \quad x \neq y.$$

In other words,

$$\forall x, y \in G, \ x \neq y, \ \exists M > 0, \ |k(x, y)| < \frac{M}{|x - y|^{n - \alpha}}, \quad 0 < \alpha \le n$$

Theorem 9

The integral operator A defined from C(G) into C(G) with weakly continuous kernel is a compact operator.

proof

Noting that, the integral operator

$$A\varphi(x) = \int_G k(x, y)\varphi(y)dy, \quad x, y \in C$$

exists as an improper integral, due to the weakly continuous kernel

$$|k(x,y)\varphi(y)| \le M \|\varphi\| |x-y|^{n-\alpha}$$

further,

$$\int_{G} |x-y|^{n-\alpha} dy \le \omega_n \int_0^d \rho^{\alpha-n} \rho^{n-1} d\rho = \frac{\omega_n}{\alpha} d^{\alpha},$$

where ω_n designates the surface area of the unit sphere in \mathbb{R}^n and d the diameter of the set G.

Let us construct a sequence of compact operators A_p which converges to the integral operator A, such that

$$\lim_{n \to \infty} \|A_p - A\| = 0.$$

choosing now a linear continuous function h defined on $[0, \infty]$ into \mathbb{R} , by

$$h(t) = \begin{cases} 0 & \text{if } 0 \le t \le \frac{1}{2} \\ 2t - 1 & \text{if } \frac{1}{2} \le t \le 1 \\ 1 & \text{if } 1 \le t < \infty \end{cases}$$

The function $k_p(x, y)$ defined on $G \times G$ into \mathbb{R} , by

$$k_p(x,y) = \begin{cases} h(p | x - y|)k(x,y) & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

is a continuous kernel for each $p \in \mathbb{N}$. Hence the integral operators A_p such that

$$A_p\varphi(x) = \int_G k_p(x, y)\varphi(y)dy, \quad x, y \in G,$$

are compact.

Besides, for all $x \in G$, we get

$$\begin{aligned} |A_p\varphi(x) - A\varphi(x)| &= \left| \int_G [k_p(x,y) - k(x,y)]\varphi(y)dy \right| \\ &= \left| \int_{G \cap |x-y| < \frac{1}{p}} \{h(p | x - y|) - 1\}k(x,y)\varphi(y)dy \right| \\ &\leq M \|\varphi\| \,\omega_n \int_0^{\frac{1}{p}} \rho^{\alpha - n} \rho^{n-1}d\rho \\ &\leq M \|\varphi\| \,\frac{\omega_n}{\alpha p^{\alpha}}. \end{aligned}$$

It is simple to see that the convergence $A_p \varphi$ to $A \varphi$ is uniform, so it follows that,

$$||A - A_p|| \le M \frac{\omega_n}{\alpha p^{\alpha}} \to 0$$
, when $p \to \infty$,

and thus A is compact operator.

Theorem 10

The integral operator A defined from the normed space $C(\partial G)$ into $C(\partial G)$ with continuous or weakly continuous kernel is a compact operator, where under ∂G we designate a regular boundary of the set G.

Bibliography

[1] M. NADIR. Cours d'analyse fonctionnelle, université de Msila 2004.