§2. Compact Operators

Compact linear operators

A linear operator A defined from a normed space E into a normed space F'
is called a linear compact operator or completely continuous linear operator
if for every bounded subset G of I, the image A(G) is relatively compact in
F'. In other words, the closure A(G) is compact.

Theorem 1 (Compactness criterion)

A linear operator A defined from a normed space E into a normed space
F' is called a linear compact operator or completely continuous linear operator
if and only if for every bounded sequence @, in E, the sequence Ay, in F
has a convergent subsequence.

Proof

Let ¢, be a bounded sequence in E, since the operator A is compact,
then the set {Ap,} is relatively compact in F' where this property shows
that Ay, contains a convergent subsequence.

Conversely, let us consider any bounded subset G in E and let ¢, be any
sequence in A(G). Then there exists a bounded sequence ,, in G, such that

V= Ap,.

By assumption, Ay, = v, contains a convergent subsequence ¢, in F.
Thus A(G) is relatively compact, because for any bounded sequence 1, in
A(G) there exits a convergent subsequence ¢, in F. In other words, for all
bounded set G C FE, the set A(G) is relatively compact in F. Hence A is
compact.

Theorem 2
The linear combination A = aA; + BAs of compact operators A, and A,
is a compact operator, for every scalars o and f3.

Proof
Let ,, be a bounded sequence in E and let Ap,, be a sequence in F|, then

Ap, () = aAip, () + BA2p, (), with ¢, € E, n € N.
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The operators A; and A, are compact, one can extract from A;p, and
Asp,, two convergent subsequences which give by their sum a convergent
subsequence of Ap, . Hence A is compact.

Theorem 3
The product AB of two bounded operators A and B is compact if either
of operators A or B is compact.

Proof

Let ¢,, be a bounded sequence in F, then if we consider B as a bounded
operator the sequence By, (z) is bounded, and from the compactness of the
operator A gives a convergent subsequence A(By, (7)) of A(By,(x)). Hence
the operator AB is compact.

On the other hand, if we consider B as a compact, one can extract from
By, (r) a convergent subsequence By, (z), and from the boundedness of
the operator A gives the convergence of the sequence A(Bp,(z)). Hence
the operator AB is compact.

Theorem 4
A sequence A, of compact operators defined from a normed space E into
a Banach space F' converges uniformly to an operator A, say,

lim [|A, — A =0.
Then the limit operator A is compact.

Proof

Let ¢, be a bounded sequence in E, the operator A;is compact, then
one can extract from the sequence A;p, a convergent subsequence, say c,o,l1 a
subsequence from ¢,, such that A;p) converges.

In the same way, we can extract from the sequence Ayl a convergent
subsequence , say ¢? a subsequence from ¢! such that Ayp? converges.

Noting that, we obtain from the bounded sequence ¢,, a subsequence (2
such that A;¢? and Ayp? both converge.

Continuing in this way, we see that, for the compact operators A;, A, .., 4,,
there exists a nested subsequences

@b C ..iph Cpn C oy,



such that, the sequences AP converge for all £ =1,2,....p.

In order to show the compactness of the operator limit A, we must use the
completeness of the space F' and showing that the sequence Ag? is Cauchy
sequence.

Noting that the sequence ¢, is bounded, say ||, | < M for all n. Hence
|| ¥2 ||[< M for each n and p. Choose n = p so that

€
3M°
Since the sequence A, ¢? is Cauchy, because it converges there is N such
that, for all p > N and ¢ > N, we get

[An — All <

€
| Aneh, — Al || < ~
Hence we obtain

< || Agp — Anih|| + | Anser, — Anl|| + ([ Aneell, — ALl
< l140 = Al + 140 — Aueil + 114 = Al I
<—M+-+—M=c¢.
S T3t AMT T C
Remembering that, due to the completeness of the space F, the Cauchy
sequence ApP converges as a subsequence of Ap, where ¢ is a subsequence
of an arbitrary bounded sequence ¢,,. Hence the compactness of the operator

A.

Theorem 5 (finite dimensional range)
Let A be a bounded operator defined from E into F with the range A(E)
has a finite dimension dim A(E) < oo, then the operator A is compact.

Proof

Indeed, for all bounded set G in F, the range A(G) is a bounded set in the
finite dimensional space A(F). Hence A(G) is relatively compact, it follows
that A is a compact operator.

Theorem 6 (finite dimensional domain)

Let A be a bounded operator defined from E into F with the domain E
has a finite dimension dim E& < oo, then the operator A is compact.
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Proof
Indeed, the space F has a finite dimension dim £ < oo implies the finite
dimensional range A(FE), say

dim A(E) < dim E,
it follows that A is a compact operator.

Lemma 1
Let G be a closed subspace in the normed space E such that, G # E then
there exists an element ¢ € E with ||¢|| = 1 such that, for all ¥ € G, we
have
le—v] > a, with0<a<1

Proof
Indeed, let f be an element of E such that f ¢ G then, we get

inf ||f —hl| =58>0,

choosing an element g belongs to G such that,

B
B f=gll < o
Define the vector ¢ by
b= f—y
If =gl
this vector ¢ has a unit norm ||| = 1, besides, for all ) € G we get
f—g
ool = |
HQ—H
1f =T+ (IlF = gl D)
“lf =l
b a
“TF—al =

Theorem 7
The identity operator I defined from a normed space E into E is compact
if and only if the space E has a finite dimension.
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Proof

let ¢,be an element of F, such that ||p,|| = 1, then the set of finite
dimension G; = span{p, } represents a closed subspace of E. So there exists
an element ¢, € E, such that [|¢,|| = 1 and ||, — ¢,|| > 3. By the same way
we take a closed subspace Gy = span{y;, p,} and finding an element ¢, € F
such that [|¢,|| =1 with [¢; — ¢]] > % and ||, — @5]| > 1. One repeat the
same procedure until the obtaining of a sequence ¢, verifying ||¢, || = 1 and
¢ — @nll > 3, for all m # n.

Noting that, the sequence ¢,, is bounded but does not contain any con-
vergent subsequence. Hence the operator Iy, = ¢, is not compact.

Corollary 1
The closed unit ball B(0,1) in the normed space E of infinitely dimen-
sional s not compact.

Indeed, B(0,1) is bounded but cannot be compact; thus

I(B(0,1) = B(0,1) = B(0,1),
is not relatively compact.
Corollary 2
A bounded operator A in a normed space E is not generally a compact

operator.

Indeed, see the Identity operator A = [ in the infinitely dimensional
normed space F.

Theorem 8
The integral operator A defined from C(G) into C(G)

Aple) = [ han)e)dy, .y €
G
with continuous kernel k(x,y) is a compact operator.

Proof
Let E be a bounded set of C'(G) then, for each ¢ € E, we have
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lell < M,
besides, for all x € G and ¢ € E, we get

Ag(z)] = \ / Gk(x,ymy)dy'
< M |G| max |k(z, y)i:

It follows that A(F) is bounded.
By assumption, the kernel k(z,y) is continuous over the compact G x G,
thus it is uniformly continuous and therefore

3

Ve >0, 30 >0, Va,y,z € G, |z —y| <d = |k(z,2) — k(y, 2)| < iR

Hence, for each ¢ € E and x,y € G, with [z —y| < ¢

Ag(x) — Ag(y)| = \ [ (b2 =kl 2t
E

<—=—M|G|=¢
This relation expresses that A(FE) is equicontinuous. Hence A(FE) is rel-
atively compact, so by Arzela-Ascoli’s theorem A is compact.

Weakly singular kernel

The kernel k(z,y) is said to be weakly singular if it is defined continuous
on G x G C R" x R" for all # # y and there exist a positive constants M
and « €]0, n] such that

M

[k(z,y)| < W, r,yeld, x#y.

In other words,

Ve,y € G, x#y, 3IM >0, |k(z,y)| <

O<a<n
|z —y

|n—a7

Theorem 9
The integral operator A defined from C(G) into C(G) with weakly con-
tinuous kernel is a compact operator.



proof
Noting that, the integral operator

Aple) = [ Kepeti)dy, oy e G
G
exists as an improper integral, due to the weakly continuous kernel

|k, 9)em)] < M ol |z —y|" ",
further,

d w
/ |z —y[" " dy < wn/ p* T dp = —d,
G 0 aQ

where w,, designates the surface area of the unit sphere in R" and d the
diameter of the set G.

Let us construct a sequence of compact operators A, which converges to
the integral operator A, such that

lim ||A, — Al =0.

n—0o0

choosing now a linear continuous function h defined on [0, oo[ into R, by

0 if 0<t<3;
h(t)=<¢ 2t—1 if $1<t<1 |
1 if 1<t<oo

The function k,(x,y) defined on G x G into R, by

AN { ole =Dk ) I 2 2y

is a continuous kernel for each p € N. Hence the integral operators A,
such that

App(x) Z/G/fp(l‘,y)so(y)dy, z,y € G,

are compact.



Besides, for all z € G, we get
Ayeta) = Aol = | [ Biten) = elotas

_ / o (Bl =) — G oty dy

< M P a—n n—ld

< Mllglfwn [ p*"p" dp
Wn 0

< M|

ap®

It is simple to see that the convergence A,p to Ay is uniform, so it follows
that,

A=Al <M

w
" — 0, when p — o0,
ap®

and thus A is compact operator.

Theorem 10

The integral operator A defined from the normed space C(0G) into C(9G)
with continuous or weakly continuous kernel is a compact operator, where
under OG we designate a reqular boundary of the set G.
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