§3. Equations with Compact Operators

Equations of the second kind

Let A be a compact operator defined on the normed space F into itself,
the operator T' = I — A where I denotes the identity operator defines an
operator equation called equation of the second kind, given as

or merely

o —Ap=f,

where f is a given function of E and ¢ is the unknown function of E.

Theorem 1
The null-space N(T') of the operator T defined by

N(T)=%kerT ={p€c E; To=(I—-A)p =0},
18 a closed and finite dimensional subspace.

Proof

Indeed, it is known that the kernel N(T') of a bounded operator T is a
closed subspace of E, since, for all sequence ¢,, in N(7T') converges to ¢ in
E, we obtain ¢ in N(T'). Really, due to the boundedness of T we have

Ty, =0 = lim Ty, =0,
n—oo
or still
T(hm@&zﬂ%ﬁT@)z&
n—oo

Hence, the null-space N(T') is closed.
On the other hand, all functions ¢ € N(T') must satisfy the equation

To=¢—Ap=0,
or still
Ap = .

Noting that, the restriction of the operator A to the subspace N(T')
coincides with the identity operator on N (7). The operator A is compact



from E to E and therefore also compact from N(T') to N(T') since N(T) is
closed. Evidently, for all bounded sequence ¢,, in E in particular in N(7T')
the sequence Ag,, = ¢,, contains a convergent subsequence Ay, = @, in
the closed N(T'). Hence, the compact operator A represents the identity
operator on the subspace N(T') and therefore the subspace N(T) is of finite
dimensional.

Remark 1

The null-space N(T™) of the operator T for all n € N, is a closed and
finite dimensional subspace. Indeed, the operators T™ can be written in the
form

Th=(1-A)"=1-A,,
where A, is a compact operator as combination of compact operators given
by
An=) (=1 < i ) g
i=1

Theorem 2
The sequence of null-spaces sets

N (T), N(T?),..., N(T"),...

1s increasing and stationary sequence. In other words, the sequence contains
uniquely a finite number of distinct sets, so there exists a nonnegative integer
p € N, such that

{0} CN(T)C N (T?) C..CN(T?)=N (T"*") = ..,

the number p is called the Riesz number of the compact operator A for the
null-spaces sets N(T™).

Proof

Indeed, the inclusion is evident, since
peNT")=T"p=0,
and therefore
T(T") =T" =0 = pe NT").
Hence, the inclusion of sets

N(T™) € N(T"™™), foralln € N. (1)



Suppose that there is no integer p € N, such that the sequence N(T™) is
stationary, that is to say

N(T™) # N(T"), for all m,n € N, with m < n.
In other words, we write
{0}cN(T)C..CNT™) cNT™™) c..c NT"YH c NT") C ...

In particular, taking N (7™~ !) # N(T™), the relation N(T"~!) ¢ N(T")
between a closed subspaces involves the existence of an element ¢,, in N (T™),
with unit norm ||, || = 1, such that

1
lon —nall > 5, for all s € N

Generally, for all sequence ,, € N(T") and for all m,n such that m < n,
we have the following relation

[Ap, — Aol = (I =T)p, — (I = T)ppl
1

For, the elements of the sequence (p,, — Ty, + T'¢,) belong to the
subspace N(T"~1). Indeed, due to the relation

N(T™) c N(T" Y ¢ N(T™),
it comes
Pm € N(T™) = @, € N(T") and g, € N(T"),

or still

Om € N(T™) = T, =0, T" 1o, =0 and T"¢,, = 0.
Noting that, for ¢, € N(T™), we get
Tn_l(gpm - TSDm + T@n) = Tn_l(pm - Tn(pm + Tn(pn =0.

Hence
((Pm - T(pm + TS%) € N(Tn_l)'



The sequence ¢,, is bounded, so by virtue of the compactness of the
operator A, we can extract a convergent subsequence from the sequence
Agp,,. Contradiction with the relation (2). Hence

NI Y = N(T).
It remains to demonstrate now the relation
N(T"™) = N(T").
Indeed, for ¢ € N(T" 1) we get
@ € N(T") = Ty = T™(Tp) =0,

it gives
Ty € N(T") = N(IT"™),

that means

Tee NT" Y =T Y Tp)=T"¢ =0= o c N(T"),

and therefore
N(T™h) ¢ N(T™).

Hence, there exists a nonnegative integer p € N, such that
{0} € N(T) € N(T?) C ... C N(T?) = N(TP™') = N(TP™2) = ..,

where p is given by

p =min{k € N; such that N(T*) = N(T*+1)}.
Theorem 3
The range space R(T') of the operator T defined by
R(T)=ImT =T(F)={Y; JpeE, Ty=1},

1s a closed subspace.

Proof

It is known that, the range R(T") of a linear operator 7" is a linear
subspace. Let f be an element of the closure T(FE), then there exists a
sequence f, of the set T'(E) such that

lim f, = f.
n—oo
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In other words, f,, € T'(F) there exists a sequence ¢,, € E such that

TQDn = fm

with the relation of convergence
lim T'p,, = lim f, = f.
n—oo n—oo
o First case p,, bounded

Suppose that, the sequence ¢,, is bounded then, due to the compactness
of the operator A there exists a subsequence Ap, ) from the sequence Ay,
such that, Agon(k) converges to ¥. Hence, the convergence of the subsequence
©n(k) to an element ¢ in E. Say

Jm npy = lm (TSOn(k) ak A%(k))
= limT lim A
dm T + Jim A2
= [+ti=9pck

Due to the boundedness of the operator T" and the convergence of the
sequence T'p,,, we get

f=1lmf, = limTyp,

n—00 n—0o0
= lerEngon(k) =T (kli_g)locpn(k)) =Tep.
Hence f = Ty € T(E) = T(E).
o Second case ¢, unbounded
Suppose that, the sequence ¢,, is not bounded, then we get
1. If ¢, € N(T)
For the sequence ,, inthe null space N(T'), we have T'p,, = f, =0

Te,=0= limTy,=0=f=0cT(E)=T(E),

as a linear subspace contains the null element.



2. If ¢, ¢ N(T)

Taking the subspace G of E spanned by ¢, and N(T') defined as
G = span {p, + N(T)}.

The subspace N (T') is closed in G. Hence, there exists an element ¢, € G

with a unit norm ||¢,,|| = 1 such that
1
Hwn - gnH > 57 v€n € N(T)7

with the following relation

Y, = anp, +0n, a, €R, 6, € N(T).

Noting that, there is no subsequence a,,) of the sequence a,, converges
to the null element. For, if we suppose there exists a such subsequence, say
lim a,,;) = 0, we obtain

k—o0
lim T = 1 T l To
Jim T4 ) i (an (k) TPn(r)) + Hm T0n )
= l im T l T
) 1 T onity B Tt
= 0f+0=0.

In other words, there exists a subsequence ¥,,(;) of the subsequence ¢, )
of the bounded sequence 1,, such that Az/)n(j converges to an element v of F.
This implies the convergence of the subsequence ¥ to the same element
1 of E, for, we have

n(j)

lim 9,5y = hm Twn + hm A1/Jn = 1.

j—o0
It is clear that, T = 0. Hence ¢ € N ( ). Contradiction with the fact
that

1

We can therefore conclude that a,;! is bounded. Say

-1

a’n n :(Pn+a7_119n‘

Then, it comes
lim T(a,',) = lim Ty, + lim T(a,'6,)
N—00 n—o0 n—o0

= lim Ty, +0=f.
n—oo



The sequence a,, 11, is bounded as product of two bounded sequences
a; ! and v,,. Hence there exists a subsequence a;(lk)q/)n(k) such that A(a;lk)wn( k)

converges to an element a1/ of E. This implies the convergence of the sub-
sequence a;(lk)lbn(k) to the same element a1 of E, for, we have

Jim a6 = 0 T(0,60Vnm) + im Ala, o) =a”'v € B,
The operator T' is continuous, then we write
kli_{goT(aT_L(lk)wn(k)) = T(,}i_)n;)(a;(lk)wn(k)))
= T(a ') =feT(B)=T(E).

Hence, the result

Theorem 4
The sequence of range spaces sets

R(T),R(T?), ..., R(T™),....

1s decreasing and stationary sequence. In other words, the sequence contains
uniquely a finite number of distinct sets, so there exists a nonnegative integer
q € N, such that

..... =R(T"™)=R(TY C....CR(T*) CR(T)CE

The number q is called the Riesz number of the compact operator A for
the range spaces sets R(T™).

Proof
Indeed, the inclusion is evident, since

Y € R(I™) = ¢ =T (o) = T"(T'p) = T"¢y € R(T™),

and therefore
Yp=T"p = ¢=T"¢,.

Hence, the inclusion of sets

R(T™) ¢ R(T™). (3)



Suppose that there is no integer ¢ € N, such that the sequence R(T ")
is stationary, that is to say

R(T™) # R(T"), for all m,n € N, with n < m.
In other words, we have
W CR(T™)..CR(IT"™) CR(T")C..CR(T)CE
In particular, taking R(T"*1) # R(T™), the relation R(T"*') C R(T")

between a closed subspaces involves the existence of an element v, in R(T™),
with unit norm |[|¢,,|| = 1, such that

1 n
H ¢n - wn-i-l H> 57 for all wn—i-l € R(T +1)'

Generally, for all sequence 9,, € R(T™) and for all m,n such that n < m,
we have the following relation

14, = Al = (T =Ty, — (1= T |
= [n— = T 4 TO) > 5. (4)

For, the elements of the sequence (v, — T%,, + T%,,) belong to the
subspace N(T"*1). Indeed, due to the relation

R(T™™ ¢ R(T™) ¢ R(T™™) ¢ R(T™),

it comes

¥, € R(T™) = 1, € R(T"),

also, we have
T, € R(T™) = T, € R(T™).
Noting that, for ¢, € R(T"), we get
¥, € R(T") = T, € R(T™)

Hence
(¢m - Twm =+ Twn) € R(Tn+1)'



The sequence ,, is bounded, so by virtue of the compactness of the
operator A, we can extract a convergent subsequence from the sequence
Ap,,. Contradiction with the relation (4). Hence

R(T™) = R(T™).
It remains to demonstrate now the relation
R(Tn+2) — R(TnJrl)

Indeed, the first inclusion R(T™2) C R(T™"1) is always true following
(3), for the second one, we get

Y eERT™) = = T o =T(T"p)
T(T™ o) = T ey € R(T™?),

or still
R(T™) € R(T").

Hence, there exists a nonnegative integer ¢ € N, such that
e = R(T"?) = R(T"™) = R(TY) c ..R(T*) CR(T) C E
where ¢ is given by

¢ = min{k € N; such that R(T*) = R(T*1)}.

Lemma 1
The Riesz number p of the null-spaces sets N(T™) and the Riesz number
q of the ranges spaces R(T™) are equal. Say

p=4q

Proof
Suppose that, the Riesz numbers p and ¢ are different, say p # q.

1. First case p <q,

{0} c N(T)C...C N(TP) = N(TP*H) = .. = N(TT ) = N(T9) = .., (5)



and also

= R(TMY =R(TYH) Cc RTT"™ ) Cc...CR(TP) C...C R(T) C E. (6)

We can see that, there exists a function v € R(T?7!) such that ¢ ¢
R(T), that is to say

Y =T""1p e R(TIY),
the composition by the operator T of both sides, gives us
Ty =T% € R(T?) = R(T*"),
this relation shows that, there exists a function ¢, such that
Ty = Tl = Ty,

or still
Ty, — T = 0.

Hence, we obtain

T(Tpy — ) = 0= Ty —p € N(T7) = N(T*71). (7)
It is to remark that the relation (7) gives us
T(py) = € N(T7) = T (T, — ¢) =06 Tlp =T 9 =4,

this implies that ¢ = T9; € R(T?), contradiction with the fact that ¢ ¢
R(TY).

2. Second case q < p,

{0} c N(T)C ... N(T%) C ... N(TP"1) ¢ N(TP) = N(T"*1) = ... (8)
and also
W =R(IP)=RI" YY) =..=RTYCRT"™ ) c..cRT)CE (9)

We can see that, there exists a function ¢ € N(TP) such that ¢ ¢
N(TP~1), that is to say
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TP 1o € R(TP™Y) = R(T?) = R(TY),
this relation shows that, there exists functions ¢; and ¢, such that
TP o =TPp) = Ty, (10)

the composition by the operator 1" of both sides and the relation ¢ € N(17)
give us
TPp =T o) =T, =0,

this implies that
1 € N(TPT) = N(17).

Hence, it comes
1
TPtlp, = TPy, = 0.

It is to remark that the relation (10) gives us TP¢; = TP~ 1p = 0, this
implies that ¢ € N(TP~!), contradiction with the fact that ¢ ¢ N(TP~1).

Theorem 5
The subspaces N(T") and R(T") are supplementary. That is to say

E=kerT"®ImT"=NT")® R(T"),
where r = p = q is the Riesz number.

Proof
For all element ¥ € F, we get

YpeE=TcR(T) =..=R(T™).
This relation implies the existence of a function ¢, such that
T =T* =T (b —T"p) =0,

or still,
(v —T"p)=0¢€ N(T").

Therefore, we have
Y=0+T"p, with 6 N(T") and T"¢p € R(T").

For all element ¢» € N(T") N R(T"), we get

11



e R(T") and ¥ € N(T"),
this relation implies 779 = 0 and the existence of a function ¢, such that
1 =T"p, it comes

v=T¢ = TPp=0=T"p,

or still,

Y EN(T?) = ...,... = N(T").

Therefore, we have
Y =T"¢p=0.

Lemma 2
The operator T = I — A is injective if and only if, the operator T" is
injective for all r € N.

Proof
Supposing that, The operator T is injective then, for all » € N, we have

T'p1=T"0y = T(T o) =TT ) =T Lo, =T o,
= T(IT" %) =T(T"2py) = T 20, =T 2,
= LT (Tey) =T(Tey) = Te; =Ty
= Y1 = Pa.

Hence, the operator T is injective.
Supposing that, The operator T" is injective for all » € N, then we have

Tor=Typy = T HTp) =T Tpy) =T ¢, =T 0,

= P1= P2
Hence, the operator T is injective. That is to say

{0} =N(T)=N(T?)=..=NT") = ..., ...

Lemma 3
The operator T' = I — A is surjective if and only if, the operator T" is
surjective for all r € N.

Proof

12



Suppose that, the operator T is surjective then, for all » € N, say

Vi €E, Jpy € E; v =Ty, = dpy € E; o =Ty
= =Ty, =T(Tpy) =T gy
= .Jdo, € E; o1 =T,
= Y=Tp; =T(Tpy) = .. =T(T" ') =T"p,.

Finally, we obtain
Yy e E, Jp. € E; =T .
Hence, the operator T" is surjective.
Suppose that, the operator 1" is surjective for all » € N, say
VY € E, Jp; € E; v =T"py,

we can also write
T, =T(IT" ') = Tep,

where the function ¢ = 77"y, € E. Finally, we obtain
Vi € E, Jp=T""p, € E; ¢ =To.

Hence, the operator T is surjective. That is to say

E=R(T)=R(T*) =..=R(T") = ..., ...

Theorem 6
Let A be a compact operator defined from a Banach space E into itself

then, the operator T = I — A is injective if and only if, T = I — A is
surjective. Besides the inverse operator T—! = (I — A)~! defined from E
into E is bounded.

Proof
It is known that, for all Riesz number r = p = ¢, The subspaces N(T")

and R(T") are supplementary. Say

E=N(T")® R(T").

13



e The injection of the operator T" implies the one of T". Hence the sur-
jection of the operator T which it assures us the surjection of the
operator T

e The surjection of the operator 7" implies the one of T". Hence the
injection of the operator 1" which it assures us the injection of the
operator T.

e The injection of the operator T or its surjection implies the bijection
of this operator T' = (I — A). Hence the boundedness of its inverse
T-1=(I-A)L

Theorem 7
Let A be a compact operator from a Banach space E into itself then, the
nonhomogeneous equation

To=p—Ap=f (11)

admits a unique solution ¢ € E, for all f € E, if and only if, the homoge-
neous equation
To=¢p—Ap=0 (12)

admits uniquely a trivial solution ¢ = 0.

Proof

Indeed, suppose that the equation (11) admits a solution for all f € E,
it wants to say that the operator T is surjective and the Riesz number r is
null. Hence the operator T is injective. In other words, the equation (12)
admits the trivial solution ¢ = 0.

Reciprocally, suppose that the equation (12) admits uniquely the trivial
solution ¢ = 0, it wants to say that the operator T is injective and the
Riesz number r is null. Hence, the operator T is surjective and therefore
this operator is bijective. In other words, the existence and the uniqueness
of the solution of the equation (11).
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