
 

 

 

 
§3. Equations with Compact Operators

Equations of the second kind
Let A be a compact operator defined on the normed space E into itself,

the operator T = I − A where I denotes the identity operator defines an
operator equation called equation of the second kind, given as

Tϕ = (I −A)ϕ = f,

or merely

ϕ−Aϕ = f,

where f is a given function of E and ϕ is the unknown function of E.

Theorem 1
The null-space N(T ) of the operator T defined by

N(T ) = kerT = {ϕ ∈ E; Tϕ = (I −A)ϕ = 0},

is a closed and finite dimensional subspace.

Proof
Indeed, it is known that the kernel N(T ) of a bounded operator T is a

closed subspace of E, since, for all sequence ϕn in N(T ) converges to ϕ in
E, we obtain ϕ in N(T ). Really, due to the boundedness of T we have

Tϕn = 0 ⇒ lim
n→∞

Tϕn = 0,

or still
T
(
lim
n→∞

ϕn

)
= 0⇒ T (ϕ) = 0.

Hence, the null-space N(T ) is closed.
On the other hand, all functions ϕ ∈ N(T ) must satisfy the equation

Tϕ = ϕ−Aϕ = 0,

or still
Aϕ = ϕ.

Noting that, the restriction of the operator A to the subspace N(T )
coincides with the identity operator on N(T ). The operator A is compact
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from E to E and therefore also compact from N(T ) to N(T ) since N(T ) is
closed. Evidently, for all bounded sequence ϕn in E in particular in N(T )
the sequence Aϕn = ϕn contains a convergent subsequence Aϕnk = ϕnk in
the closed N(T ). Hence, the compact operator A represents the identity
operator on the subspace N(T ) and therefore the subspace N(T ) is of finite
dimensional.

Remark 1
The null-space N(Tn) of the operator Tn for all n ∈ N, is a closed and

finite dimensional subspace. Indeed, the operators Tn can be written in the
form

Tn = (I −A)n = I −An,
where An is a compact operator as combination of compact operators given
by

An =

n∑
i=1

(−1)i+1
(
n
i

)
Ai

Theorem 2
The sequence of null-spaces sets

N (T ) , N(T 2), ..., N(Tn), ...

is increasing and stationary sequence. In other words, the sequence contains
uniquely a finite number of distinct sets, so there exists a nonnegative integer
p ∈ N, such that

{0} ⊂ N (T ) ⊂ N
(
T 2
)
⊂ ... ⊂ N (T p) = N

(
T p+1

)
= ...,

the number p is called the Riesz number of the compact operator A for the
null-spaces sets N(Tn).

Proof
Indeed, the inclusion is evident, since

ϕ ∈ N(Tn)⇒ Tnϕ = 0,

and therefore

T (Tnϕ) = Tn+1ϕ = 0 ⇒ ϕ ∈ N(Tn+1).

Hence, the inclusion of sets

N(Tn) ⊂ N(Tn+1), for all n ∈ N. (1)
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Suppose that there is no integer p ∈ N, such that the sequence N(Tn) is

stationary, that is to say

N(Tm) 6= N(Tn), for all m,n ∈ N, with m < n.

In other words, we write

{0} ⊂ N(T ) ⊂ ... ⊂ N(Tm) ⊂ N(Tm+1) ⊂ ... ⊂ N(Tn−1) ⊂ N(Tn) ⊂ ...

In particular, taking N(Tn−1) 6= N(Tn), the relation N(Tn−1) ⊂ N(Tn)
between a closed subspaces involves the existence of an element ϕn inN(T

n),
with unit norm ‖ϕn‖ = 1, such that∥∥ϕn − ϕn−1∥∥ > 1

2
, for all ϕn−1 ∈ N(Tn−1).

Generally, for all sequence ϕn ∈ N(Tn) and for allm,n such thatm < n,
we have the following relation

‖Aϕn −Aϕm‖ = ‖(I − T )ϕn − (I − T )ϕm‖
= ‖ϕn − Tϕn − ϕm + Tϕm‖

= ‖ϕn − (ϕm − Tϕm + Tϕn)‖ >
1

2
. (2)

For, the elements of the sequence (ϕm − Tϕm + Tϕn) belong to the
subspace N(Tn−1). Indeed, due to the relation

N(Tm) ⊂ N(Tn−1) ⊂ N(Tn),

it comes

ϕm ∈ N(Tm)⇒ ϕm ∈ N(Tn−1) and ϕm ∈ N(Tn),

or still

ϕm ∈ N(Tm)⇒ Tmϕm = 0, T
n−1ϕm = 0 and Tnϕm = 0.

Noting that, for ϕn ∈ N(Tn), we get

Tn−1(ϕm − Tϕm + Tϕn) = Tn−1ϕm − Tnϕm + Tnϕn = 0.

Hence
(ϕm − Tϕm + Tϕn) ∈ N(Tn−1).
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The sequence ϕn is bounded, so by virtue of the compactness of the

operator A, we can extract a convergent subsequence from the sequence
Aϕn. Contradiction with the relation (2). Hence

N(Tn−1) = N(Tn).

It remains to demonstrate now the relation

N(Tn) = N(Tn+1).

Indeed, for ϕ ∈ N(Tn+1) we get

ϕ ∈ N(Tn+1)⇒ Tn+1ϕ = Tn(Tϕ) = 0,

it gives
Tϕ ∈ N(Tn) = N(Tn−1),

that means

Tϕ ∈ N(Tn−1)⇒ Tn−1(Tϕ) = Tnϕ = 0⇒ ϕ ∈ N(Tn),
and therefore

N(Tn+1) ⊂ N(Tn).
Hence, there exists a nonnegative integer p ∈ N, such that

{0} ⊂ N(T ) ⊂ N(T 2) ⊂ ... ⊂ N(T p) = N(T p+1) = N(T p+2) = ...,

where p is given by

p = min{k ∈ N; such that N(T k) = N(T k+1)}.

Theorem 3
The range space R(T ) of the operator T defined by

R(T ) = ImT = T (E) = {ψ; ∃ϕ ∈ E, Tϕ = ψ},

is a closed subspace.

Proof
It is known that, the range R(T ) of a linear operator T is a linear

subspace. Let f be an element of the closure T (E), then there exists a
sequence fn of the set T (E) such that

lim
n→∞

fn = f.
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In other words, fn ∈ T (E) there exists a sequence ϕn ∈ E such that

Tϕn = fn,

with the relation of convergence

lim
n→∞

Tϕn = lim
n→∞

fn = f.

• First case ϕn bounded

Suppose that, the sequence ϕn is bounded then, due to the compactness
of the operator A there exists a subsequence Aϕn(k) from the sequence Aϕn
such that, Aϕn(k) converges to ψ. Hence, the convergence of the subsequence
ϕn(k) to an element ϕ in E. Say

lim
k→∞

ϕn(k) = lim
k→∞

(
Tϕn(k) +Aϕn(k)

)
= lim

k→∞
Tϕn(k) + lim

k→∞
Aϕn(k)

= f + ψ = ϕ ∈ E.

Due to the boundedness of the operator T and the convergence of the
sequence Tϕn, we get

f = lim
n→∞

fn = lim
n→∞

Tϕn

= lim
k→∞

Tϕn(k) = T

(
lim
k→∞

ϕn(k)

)
= Tϕ.

Hence f = Tϕ ∈ T (E) = T (E).

• Second case ϕn unbounded

Suppose that, the sequence ϕn is not bounded, then we get

1. If ϕn ∈ N(T )

For the sequence ϕn inthe null space N(T ), we have Tϕn = fn = 0

Tϕn = 0⇒ lim
n→∞

Tϕn = 0⇒ f = 0 ∈ T (E) = T (E),

as a linear subspace contains the null element.
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2. If ϕn /∈ N(T )

Taking the subspace G of E spanned by ϕn and N(T ) defined as

G = span {ϕn +N(T )}.

The subspace N(T ) is closed in G. Hence, there exists an element ψn ∈ G
with a unit norm ‖ψn‖ = 1 such that

‖ψn − ξn‖ >
1

2
, ∀ξn ∈ N(T ),

with the following relation

ψn = anϕn + θn , an ∈ R, θn ∈ N(T ).
Noting that, there is no subsequence an(k) of the sequence an converges

to the null element. For, if we suppose there exists a such subsequence, say
lim
k→∞

an(k) = 0, we obtain

lim
k→∞

Tψn(k) = lim
k→∞

(an(k)Tϕn(k)) + lim
k→∞

Tθn(k)

= lim
k→∞

an(k). lim
k→∞

Tϕn(k) + lim
k→∞

Tθn(k)

= 0f + 0 = 0.

In other words, there exists a subsequence ψn(j) of the subsequence ψn(k)
of the bounded sequence ψn such that Aψn(j) converges to an element ψ of E.
This implies the convergence of the subsequence ψn(j) to the same element
ψ of E, for, we have

lim
j→∞

ψn(j) = lim
j→∞

Tψn(j) + lim
j→∞

Aψn(j) = ψ.

It is clear that, Tψ = 0. Hence ψ ∈ N(T ). Contradiction with the fact
that

‖ψn − ξn‖ >
1

2
, ∀ξn ∈ N(T ).

We can therefore conclude that a−1n is bounded. Say

a−1n ψn = ϕn + a
−1
n θn.

Then, it comes

lim
n→∞

T (a−1n ψn) = lim
n→∞

Tϕn + lim
n→∞

T (a−1n θn)

= lim
n→∞

Tϕn + 0 = f.
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The sequence a−1n ψn is bounded as product of two bounded sequences

a−1n and ψn.Hence there exists a subsequence a
−1
n(k)ψn(k) such thatA(a

−1
n(k)ψn(k))

converges to an element a−1ψ of E. This implies the convergence of the sub-
sequence a−1n(k)ψn(k) to the same element a

−1ψ of E, for, we have

lim
k→∞

a−1n(k)ψn(k) = lim
k→∞

T (a−1n(k)ψn(k)) + lim
k→∞

A(a−1n(k)ψn(k)) = a−1ψ ∈ E.

The operator T is continuous, then we write

lim
k→∞

T (a−1n(k)ψn(k)) = T ( lim
k→∞

(a−1n(k)ψn(k)))

= T (a−1ψ) = f ∈ T (E) = T (E).

Hence, the result
T (E) = T (E).

Theorem 4
The sequence of range spaces sets

R(T ), R(T 2), ..., R(Tn), ...

is decreasing and stationary sequence. In other words, the sequence contains
uniquely a finite number of distinct sets, so there exists a nonnegative integer
q ∈ N, such that

..... = R(T q+1) = R(T q) ⊂ ..., . ⊂ R(T 2) ⊂ R(T ) ⊂ E

The number q is called the Riesz number of the compact operator A for
the range spaces sets R(Tn).

Proof
Indeed, the inclusion is evident, since

ψ ∈ R(Tn+1)⇒ ψ = Tn+1(ϕ) = Tn(Tϕ) = Tnϕ1 ∈ R(Tn),

and therefore
ψ = Tn+1ϕ ⇒ ψ = Tnϕ1.

Hence, the inclusion of sets

R(Tn+1) ⊂ R(Tn). (3)
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Suppose that there is no integer q ∈ N, such that the sequence R(T n)

is stationary, that is to say

R(Tm) 6= R(Tn), for all m,n ∈ N, with n < m.

In other words, we have

... ⊂ R(Tm)... ⊂ R(Tn+1) ⊂ R(Tn) ⊂ ... ⊂ R(T ) ⊂ E

In particular, taking R(Tn+1) 6= R(Tn), the relation R(Tn+1) ⊂ R(Tn)
between a closed subspaces involves the existence of an element ψn in R(T

n),
with unit norm ‖ψn‖ = 1, such that

‖ ψn − ψn+1 ‖>
1

2
, for all ψn+1 ∈ R(Tn+1).

Generally, for all sequence ψn ∈ R(Tn) and for all m,n such that n < m,
we have the following relation

‖Aψn −Aψm‖ = ‖(I − T )ψn − (I − T )ψm‖
= ‖ψn − Tψn − ψm + Tψm‖

= ‖ψn − (ψm − Tψm + Tψn)‖ >
1

2
. (4)

For, the elements of the sequence (ψm − Tψm + Tψn) belong to the
subspace N(Tn+1). Indeed, due to the relation

R(Tm+1) ⊂ R(Tm) ⊂ R(Tn+1) ⊂ R(Tn),

it comes
ψm ∈ R(Tm)⇒ ψm ∈ R(Tn+1),

also, we have

Tψm ∈ R(Tm+1)⇒ Tψm ∈ R(Tn+1).

Noting that, for ψn ∈ R(Tn), we get

ψn ∈ R(Tn)⇒ Tψn ∈ R(Tn+1)

Hence
(ψm − Tψm + Tψn) ∈ R(Tn+1).
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The sequence ψn is bounded, so by virtue of the compactness of the

operator A, we can extract a convergent subsequence from the sequence
Aψn. Contradiction with the relation (4). Hence

R(Tn+1) = R(Tn).

It remains to demonstrate now the relation

R(Tn+2) = R(Tn+1).

Indeed, the first inclusion R(Tn+2) ⊂ R(Tn+1) is always true following
(3), for the second one, we get

ψ ∈ R(Tn+1)⇒ ψ = Tn+1ϕ = T (Tnϕ)

= T (Tn+1ϕ1) = Tn+2ϕ1 ∈ R(Tn+2),

or still
R(Tn+1) ⊂ R(Tn+2).

Hence, there exists a nonnegative integer q ∈ N, such that

.... = R(T q+2) = R(T q+1) = R(T q) ⊂ ...R(T 2) ⊂ R(T ) ⊂ E

where q is given by

q = min{k ∈ N; such that R(T k) = R(T k+1)}.

Lemma 1
The Riesz number p of the null-spaces sets N(Tn) and the Riesz number

q of the ranges spaces R(Tn) are equal. Say

p = q

Proof
Suppose that, the Riesz numbers p and q are different, say p 6= q.

1. First case p < q,

{0} ⊂ N(T ) ⊂ ... ⊂ N(T p) = N(T p+1) = ... = N(T q−1) = N(T q) = .., (5)
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and also

... = R(T q+1) = R(T q) ⊂ R(T q−1) ⊂ ... ⊂ R(T p) ⊂ ... ⊂ R(T ) ⊂ E. (6)

We can see that, there exists a function ψ ∈ R(T q−1) such that ψ /∈
R(T q), that is to say

ψ = T q−1ϕ ∈ R(T q−1),

the composition by the operator T of both sides, gives us

Tψ = T qϕ ∈ R(T q) = R(T q+1),

this relation shows that, there exists a function ϕ1 such that

Tψ = T qϕ = T q+1ϕ1,

or still
T q+1ϕ1 − T qϕ = 0.

Hence, we obtain

T q(Tϕ1 − ϕ) = 0⇒ Tϕ1 − ϕ ∈ N(T q) = N(T q−1). (7)

It is to remark that the relation (7) gives us

T (ϕ1)− ϕ ∈ N(T q−1)⇒ T q−1(Tϕ1 − ϕ) = 0⇔ T qϕ1 = T q−1ϕ = ψ,

this implies that ψ = T qϕ1 ∈ R(T q), contradiction with the fact that ψ /∈
R(T q).

2. Second case q < p,

{0} ⊂ N(T ) ⊂ ... ⊂ N(T q) ⊂ ... ⊂ N(T p−1) ⊂ N(T p) = N(T p+1) = ... (8)

and also

... = R(T p) = R(T p−1) = ... = R(T q) ⊂ R(T q−1) ⊂ ... ⊂ R(T ) ⊂ E (9)

We can see that, there exists a function ϕ ∈ N(T p) such that ϕ /∈
N(T p−1), that is to say
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T p−1ϕ ∈ R(T p−1) = R(T p) = R(T q),

this relation shows that, there exists functions ϕ1 and ϕ2 such that

TP−1ϕ = T pϕ1 = T qϕ2, (10)

the composition by the operator T of both sides and the relation ϕ ∈ N(T p)
give us

T pϕ = T p+1ϕ1 = T q+1ϕ2 = 0,

this implies that
ϕ1 ∈ N(T p+1) = N(T p).

Hence, it comes
T p+1ϕ1 = T pϕ1 = 0.

It is to remark that the relation (10) gives us T pϕ1 = T p−1ϕ = 0, this
implies that ϕ ∈ N(T p−1), contradiction with the fact that ϕ /∈ N(T p−1).

Theorem 5
The subspaces N(T r) and R(T r) are supplementary. That is to say

E = kerT r ⊕ ImT r = N(T r)⊕R(T r),

where r = p = q is the Riesz number.

Proof
For all element ψ ∈ E, we get

ψ ∈ E ⇒ T rψ ∈ R(T r) = ... = R(T 2r).

This relation implies the existence of a function ϕ, such that

T rψ = T 2rϕ⇒ T r(ψ − T rϕ) = 0,

or still,
(ψ − T rϕ) = θ ∈ N(T r).

Therefore, we have

ψ = θ + T rϕ, with θ ∈ N(T r) and T rϕ ∈ R(T r).

For all element ψ ∈ N(T r) ∩R(T r), we get

11



 

 

 

 

ψ ∈ R(T r) and ψ ∈ N(T r),

this relation implies T rψ = 0 and the existence of a function ϕ, such that
ψ = T rϕ, it comes

ψ = T rϕ ⇒ T rψ = 0 = T 2rϕ,

or still,
ϕ ∈ N(T 2r) = ..., ... = N(T r).

Therefore, we have
ψ = T rϕ = 0.

Lemma 2
The operator T = I − A is injective if and only if, the operator T r is

injective for all r ∈ N.

Proof
Supposing that, The operator T is injective then, for all r ∈ N, we have

T rϕ1 = T rϕ2 ⇒ T (T r−1ϕ1) = T (T r−1ϕ2)⇒ T r−1ϕ1 = T r−1ϕ2
⇒ T (T r−2ϕ1) = T (T r−2ϕ2)⇒ T r−2ϕ1 = T r−2ϕ2
⇒ ...T (Tϕ1) = T (Tϕ2)⇒ Tϕ1 = Tϕ2

⇒ ϕ1 = ϕ2.

Hence, the operator T r is injective.
Supposing that, The operator T r is injective for all r ∈ N, then we have

Tϕ1 = Tϕ2 ⇒ T r−1(Tϕ1) = T r−1(Tϕ2)⇒ T rϕ1 = T rϕ2

⇒ ϕ1 = ϕ2.

Hence, the operator T is injective. That is to say

{0} = N(T ) = N(T 2) = ... = N(T r) = ..., ...

Lemma 3
The operator T = I − A is surjective if and only if, the operator T r is

surjective for all r ∈ N.

Proof
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Suppose that, the operator T is surjective then, for all r ∈ N, say

∀ψ ∈ E, ∃ϕ1 ∈ E; ψ = Tϕ1 ⇒ ∃ϕ2 ∈ E; ϕ1 = Tϕ2

⇒ ψ = Tϕ1 = T (Tϕ2) = T 2ϕ2

⇒ ..∃ϕr ∈ E; ϕr−1 = Tϕr

⇒ ψ = Tϕ1 = T (Tϕ2) = ... = T (T r−1ϕr) = T rϕr.

Finally, we obtain

∀ψ ∈ E, ∃ϕr ∈ E; ψ = T rϕ.

Hence, the operator T r is surjective.

Suppose that, the operator T r is surjective for all r ∈ N, say

∀ψ ∈ E, ∃ϕ1 ∈ E; ψ = T rϕ1,

we can also write
T rϕ1 = T (T r−1ϕ1) = Tϕ,

where the functîon ϕ = T r−1ϕ1 ∈ E. Finally, we obtain

∀ψ ∈ E, ∃ϕ = T r−1ϕ1 ∈ E; ψ = Tϕ.

Hence, the operator T is surjective. That is to say

E = R(T ) = R(T 2) = ... = R(T r) = ..., ...

Theorem 6
Let A be a compact operator defined from a Banach space E into itself

then, the operator T = I − A is injective if and only if, T = I − A is
surjective. Besides the inverse operator T−1 = (I − A)−1 defined from E
into E is bounded.

Proof
It is known that, for all Riesz number r = p = q, The subspaces N(T r)

and R(T r) are supplementary. Say

E = N(T r)⊕R(T r).
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• The injection of the operator T implies the one of T r. Hence the sur-
jection of the operator T r which it assures us the surjection of the
operator T.

• The surjection of the operator T implies the one of T r. Hence the
injection of the operator T r which it assures us the injection of the
operator T.

• The injection of the operator T or its surjection implies the bijection
of this operator T = (I − A). Hence the boundedness of its inverse
T−1 = (I −A)−1.

Theorem 7
Let A be a compact operator from a Banach space E into itself then, the

nonhomogeneous equation

Tϕ = ϕ−Aϕ = f (11)

admits a unique solution ϕ ∈ E, for all f ∈ E, if and only if, the homoge-
neous equation

Tϕ = ϕ−Aϕ = 0 (12)

admits uniquely a trivial solution ϕ = 0.

Proof
Indeed, suppose that the equation (11) admits a solution for all f ∈ E,

it wants to say that the operator T is surjective and the Riesz number r is
null. Hence the operator T is injective. In other words, the equation (12)
admits the trivial solution ϕ = 0.

Reciprocally, suppose that the equation (12) admits uniquely the trivial
solution ϕ = 0, it wants to say that the operator T is injective and the
Riesz number r is null. Hence, the operator T is surjective and therefore
this operator is bijective. In other words, the existence and the uniqueness
of the solution of the equation (11).
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